80 research outputs found

    Serita Frey, Associate Professor of Natural Resources and the Environment, travels to Costa Rica

    Get PDF

    Serita Frey Professor of Natural Resources and the Environment (COLSA) travels to Argentina

    Get PDF
    The Center for International Education provided partial financial support for my sabbatical in Argentina during fall 2015. The specific goals of my trip to Argentina were to (1) visit and interact with a research group at the University of Buenos Aires, (2) explore potential research sites in the Patagonian steppe in southern Argentina, and (3) write several manuscripts and proposals

    Seasonal dynamics of soil respiration and nitrogen mineralization in chronically warmed and fertilized soils

    Get PDF
    Although numerous studies have examined the individual effects of increased temperatures and N deposition on soil biogeochemical cycling, few have considered how these disturbances interact to impact soil C and N dynamics. Likewise, many have not assessed season-specific responses to warming and N inputs despite seasonal variability in soil processes. We studied interactions among season, warming, and N additions on soil respiration and N mineralization at the Soil Warming × Nitrogen Addition Study at the Harvard Forest. Of particular interest were wintertime fluxes of C and N typically excluded from investigations of soils and global change. Soils were warmed to 5°C above ambient, and N was applied at a rate of 5 g m−2 y−1. Soil respiration and N mineralization were sampled over two years between 2007 and 2009 and showed strong seasonal patterns that mirrored changes in soil temperature. Winter fluxes of C and N contributed between 2 and 17% to the total annual flux. Net N mineralization increased in response to the experimental manipulations across all seasons, and was 8% higher in fertilized plots and 83% higher in warmed plots over the duration of the study. Soil respiration showed a more season-specific response. Nitrogen additions enhanced soil respiration by 14%, but this increase was significant only in summer and fall. Likewise, warming increased soil respiration by 44% over the whole study period, but the effect of warming was most pronounced in spring and fall. The only interaction between warming × N additions took place in autumn, when N availability likely diminished the positive effect of warming on soil respiration. Our results suggest that winter measurements of C and N are necessary to accurately describe winter biogeochemical processes. In addition, season-specific responses to the experimental treatments suggest that some components of the belowground community may be more susceptible to warming and N additions than others. Seasonal changes in the abiotic environment may have also interacted with the experimental manipulations to evoke biogeochemical responses at certain times of year

    Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter

    Get PDF
    Microbial carbon use efficiency (CUE) is a critical regulator of soil organic matter dynamics and terrestrial carbon fluxes, with strong implications for soil biogeochemistry models. While ecologists increasingly appreciate the importance of CUE, its core concepts remain ambiguous: terminology is inconsistent and confusing, methods capture variable temporal and spatial scales, and the significance of many fundamental drivers remains inconclusive. Here we outline the processes underlying microbial efficiency and propose a conceptual framework that structures the definition of CUE according to increasingly broad temporal and spatial drivers where (1) CUEP reflects population-scale carbon use efficiency of microbes governed by species-specific metabolic and thermodynamic constraints, (2) CUEC defines community-scale microbial efficiency as gross biomass production per unit substrate taken up over short time scales, largely excluding recycling of microbial necromass and exudates, and (3) CUEE reflects the ecosystem-scale efficiency of net microbial biomass production (growth) per unit substrate taken up as iterative breakdown and recycling of microbial products occurs. CUEE integrates all internal and extracellular constraints on CUE and hence embodies an ecosystem perspective that fully captures all drivers of microbial biomass synthesis and decay. These three definitions are distinct yet complementary, capturing the capacity for carbon storage in microbial biomass across different ecological scales. By unifying the existing concepts and terminology underlying microbial efficiency, our framework enhances data interpretation and theoretical advances

    Plant community structure mediates potential methane production and potential iron reduction in wetland mesocosms.

    Get PDF
    Abstract Wetlands are the largest natural source of methane to the atmosphere, but factors controlling methane emissions from wetlands are a major source of uncertainty in greenhouse gas budgets and projections of future climate change. We conducted a controlled outdoor mesocosm experiment to assess the effects of plant community structure (functional group richness and composition) on potential methane production and potential iron reduction in freshwater emergent marshes. Four plant functional groups (facultative annuals, obligate annuals, reeds, and tussocks) were arranged in a full-factorial design and additional mesocosms were assigned as no-plant controls. Soil samples from the top 10 cm were collected three times during the growing season to determine potential methane production and potential iron reduction (in unamended soils and in soils amended with 200 mM formate). These data were compared to soil organic matter, soil pH, and previously published data on above and belowground plant biomass. We found that functional group richness was less important than the presence of specific functional groups (reeds or tussocks) in mediating potential iron reduction. In our mesocosms, where oxidized iron was abundant and electron donors were limiting, iron reducing bacteria outcompeted methanogens, keeping methane production barely detectable in unamended lab incubations. When the possibility of re-oxidizing iron was eliminated via anaerobic incubations and the electron donor limitation was removed by adding formate, potential methane production increased and followed the same patterns as potential iron reduction. Our findings suggest that in the absence of abundant oxidized iron and/or the presence of abundant electron donors, wetlands dominated by either reeds or tussocks may have increased methane production compared to wetlands dominated by annuals. Depending on functional traits such as plant transport and rhizospheric oxygenation capacities, this could potentially lead to increased methane emissions in some wetlands. Additional research examining the role these plant functional groups play in other aspects of methane dynamics will be useful given the importance of methane as a greenhouse gas

    Soil Macroinvertebrate Presence Alters Microbial Community Composition and Activity in the Rhizosphere

    Get PDF
    Despite decades of research, our understanding of the importance of invertebrates for soil biogeochemical processes remains incomplete. This is especially true when considering soil invertebrate effects mediated through their interactions with soil microbes. The aim of this study was to elucidate how soil macroinvertebrates affect soil microbial community composition and function within the root zone of a managed grass system. We conducted a 2-year field mesocosm study in which soil macroinvertebrate communities were manipulated through size-based exclusion and tracked changes in microbial community composition, diversity, biomass and activity to quantify macroinvertebrate-driven effects on microbial communities and their functions within the rhizosphere. The presence of soil macroinvertebrates created distinct microbial communities and altered both microbial biomass and function. Soil macroinvertebrates increased bacterial diversity and fungal biomass, as well as increased phenol oxidase and glucosidase activities, which are important in the degradation of organic matter. Macroinvertebrates also caused distinct shifts in the relative abundance of different bacterial phyla. Our findings indicate that within the rhizosphere, macroinvertebrates have a stimulatory effect on microbial communities and processes, possibly due to low-intensity microbial grazing or through the dispersal of microbial cells and spores by mobile invertebrates. Our results suggest that macroinvertebrate activity can be an important control on microbially-mediated processes in the rhizosphere such as nitrogen mineralization and soil organic matter formation

    Microbial diversity drives carbon use efficiency in a model soil

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Domeignoz-Horta, L. A., Pold, G., Liu, X. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11(1), (2020): 3684, doi:10.1038/s41467-020-17502-z.Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.Funding for this project was provided by the Department of Energy grant DE-SC0016590 to K.M.D. and S.D.F., and an American Association of University Women Dissertation fellowship to G.P. We would also like to thank Stuart Grandy and Kevin Geyer for the fruitful discussions and Mary Waters, Courtney Bly and Ana Horta for their help with samples processing

    Long-term forest soil warming alters microbial communities in temperate forest soils

    Get PDF
    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming

    Reduced carbon use efficiency and increased microbial turnover with soil warming

    Get PDF
    Global soil carbon (C) stocks are expected to decline with warming, and changes in microbial processes are key to this projection. However, warming responses of critical microbial parameters such as carbon use efficiency (CUE) and biomass turnover (rB) are not well understood. Here, we determine these parameters using a probabilistic inversion approach that integrates a microbial-enzyme model with 22 years of carbon cycling measurements at Harvard Forest. We find that increasing temperature reduces CUE but increases rB, and that two decades of soil warming increases the temperature sensitivities of CUE and rB. These temperature sensitivities, which are derived from decades-long field observations, contrast with values obtained from short-term laboratory experiments. We also show that long-term soil C flux and pool changes in response to warming are more dependent on the temperature sensitivity of CUE than that of rB. Using the inversion-derived parameters, we project that chronic soil warming at Harvard Forest over six decades will result in soil C gain of \u3c1.0% on average (1st and 3rd quartiles: 3.0% loss and 10.5% gain) in the surface mineral horizon. Our results demonstrate that estimates of temperature sensitivity of microbial CUE and rB can be obtained and evaluated rigorously by integrating multidecadal datasets. This approach can potentially be applied in broader spatiotemporal scales to improve long-term projections of soil C feedbacks to climate warming

    Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Science 358 (2017): 101-105, doi:10.1126/science.aan2874.In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.This research has been supported by grants from the Department of Energy - DE-SC0010740; DOE DE-SC0016590: and the National Science Foundation - DEB 1237491 (LTER) ; DEB 1456528 (LTREB)
    • …
    corecore